Total Synthesis of (1S,4S)-7,8-Dihydroxycalamenene via Benzylic Alkylation of η^6 -Arene-Cr(CO)₃ Complexes

Hans-Günther Schmalz^{*}, Jens Hollander, Markus Arnold, and Gerd Dürner

Institut für Organische Chemie der Universität, Mertonviertel, Marie-Curie-Straße 11, 60439 Frankfurt am Main, Germany

Abstract: The enantioselective total synthesis of the antiinfective sesquiterpene (1S,4S)-7,8-dihydroxycalamenene (4) is accomplished by a strategy which centrally utilizes the reactivity of arene-Cr(CO)₃ complexes. In a sequence involving two successive benzylic deprotonation/alkylation steps, the chiral complex 8 (> 99 % e.e.) is converted completely regio- and diastercoselectively to 7 and further by decomplexation and ether cleavage to the target compound 4 in high overall yield and without loss of enantiomeric purity.

Recently, *Wahyuono* et al. reported the isolation of 7,8-dihydroxycalamenene derivatives 1 and 2 (as a mixture of diastereoisomers) from the plant *Guardiola platyphylla*¹. These compounds as well as their hydrogenation products 3 and 4 were shown to exhibit potent anti-infective activity against a number of pathogens (*Staphylococcus aureus*, *Bacillus subtilis*, *Klebsiella pneumoniae* and *Candida albicans*). Structurally, the 7,8-dihydroxycalamenenes are related to the aglycones of the antiinflammatory and anti-infective seco-pseudopterosins² (e.g. 5) and to the antiviral and cytotoxic helioporins³ (e.g. 6).

In this paper we wish to describe a short, efficient and completely stereoselective total synthesis of 4 by an approach which is centrally based on the reactivity of arene- $Cr(CO)_3$ complexes⁴, and which should be appropriate also for the total synthesis of other representatives of the above mentioned compounds.

Our strategy is outlined in a retrosynthetic fashion in Scheme 1. The target compound 4 is liberated from 7 by decomplexation and deprotection. This complex now is prepared from the structurally much simpler complex 8 via establishing all alkyl substituents at the tetralin-skeleton by successive deprotonation/ alkylation steps. In doing so, the $Cr(CO)_3$ group serves as an activating group by enhancing the acidity at the benzyl (and aryl) positions thus allowing alkylations under mild conditions⁵. Furthermore, the $Cr(CO)_3$ fragment sterically blocks one π -face of the arene ligand (stereochemical controller) forcing all reaction partners to approach diastereoselectively from the opposite face. Therefore, the *cis*-configuration of the benzylic substituents is guaranteed, and the absolute stereochemical information contained in the chiral metal complex substructure of 8 is completely transferred to the newly generated (lasting) chirality centers.

The synthesis was at first elaborated employing racemic compounds⁶ (Scheme 2): Complex *rac*-8 was prepared from 5,6-dimethoxy-1-tetralone (9)⁷ via benzylic deoxygenation to 10 and complexation with 1.1 eq. $Cr(CO)_6$ under standard conditions⁸. Alternatively *rac*-8 was obtained by ionic hydrogenation⁹ of the *endo*-tetralol complex *rac*-11¹⁰.

Scheme 2: a) H₂, Pd-C, EtOH; b) Cr(CO)₆, Bu₂O/THF (10:1), reflux, 48 h; c) HSiEt₃, TFA, CH₂Cl₂, n., 2 h; d) *n*-BuLi, THF, -50°C, 0.5 h, then TMSCl, 0°C, 1 h; e) *n*-BuLi, THF, HMPA, -60 \rightarrow 0°C, 2 h, then MeI, 0°C, 1 h; f) *s*-BuLi, THF, -55 \rightarrow -30°C, 1 h, then HMPA, *i*-PrI, -25°C, 1 h; g) TBAF, THF, r., 1h; h) *n*-BuLi, THF, -30°C, 1 h, then MeI, then I₂/Et₂O; i) BBr₃, CH₂Cl₂, -40 \rightarrow r., 1h.

To prepare for the benzylic alkylations, the acidic *ortho*-methoxy aryl position of *rac*-8 was first protected by silylation (*n*-BuLi/TMSCl). Deprotonation of *rac*-12 with *n*-BuLi in THF/HMPA followed by addition of methyl iodide then furnished *rac*-13 as a single regio- and diastereoisomer¹¹. The second benzylic alkylation step was accomplished in a similar way, except that *s*-BuLi in THF was used to deprotonate *rac*-13. Subsequent addition of HMPA and isopropyl iodide cleanly afforded the desired product *rac*-14, again as a single diastereomer¹². The concluding steps of the synthesis were performed as follows: Fluoride-induced desilylation, *ortho*-methylation (*n*-BuLi/Mel) and oxidative decomplexation with iodine furnished *rac*-16 (*via rac*-7), which was finally converted to *rac*-4 by BBr₃-cleavage¹³ of the methyl ether groups. The transformation of *rac*-8 to *rac*-4 was thus achieved in only six steps with 62 % overall yield¹⁴.

The synthetic route elaborated in the racemic series was then applied to the preparation of the optically active compounds. For this purpose, the non-racemic *endo*-alcohol complex 11 was prepared from the ketone 9 via enantioselective, oxazaborolidin-catalyzed borane reduction^{15,10} followed by diastereoselective complexation¹⁰ (Scheme 3). While the enantioselectivity of the reduction step was not complete, a single recrystallization of 17 provided an almost enantiomerically pure material (\geq 99 % e.e.)¹⁶. The conversion of 11 to the target compound 4 (using the conditions given in Scheme 2) proceeded without loss of enantiomeric purity as it was proven at the stage of $16^{17,18}$.

Scheme 3: a) CBS-reduction^{10,15}: 0.2 eq. D-proline derived oxazaborolidine, addition of 0.6 eq. $BH_3 \cdot Me_2S$ over 5 h, THF, 25 °C, (93 %); b) recryst. (EtOAc/hexane) (70 %); c) 1.1.eq. $Cr(CO)_6$. cat. THF, Bu_2O /heptane (1:1), reflux, 27 h (74%);

Having thus demonstrated the usefulness of complex 8 as a chiral synthetic building block, we are now going to synthesize other target compounds by a related approach¹⁹.

Acknowledgement. This work was supported by the Volkswagen-Stiftung, the Fonds der Chemischen Industrie, and the Dr. Otto Röhm-Stiftung. We also thank Prof. Dr. G. Quinkert, Frankfurt, for support.

REFERENCES AND NOTES

- Wahyuono, S.; Hoffmann, J.J.; Bates, R.B.; McLaughlin, S.P. Phytochemistry 1991, 30, 2175-2182.
- 2. Look, S.A.; Fenical, W. Tetrahedron 1987, 43, 3363-3370.
- 3. Tanaka, J.-i.; Ogawa, N.; Liang, J.; Higa, T. Tetrahedron 1993, 49, 811-822.

- Reviews: a) Semmelhack, M.F. Ann. N. Y. Acad. Sci. 1977, 295, 36-51; b) Collman, J.P.; Hegedus, L.S.; Norton, J.R.; Finke, R.G. Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, 1987, chapter 20; c) Kalinin, V.N. Russ. Chem. Rev. 1987, 56, 682-700. d) Uemura, M. in Advances in Metal-Organic Chemistry, Vol. 2; Liebeskind, L.S. Ed.; JAI Press, 1991, 195-245.
- 5. Davies, S.G.; Coote, S.J. Coote, Goodfellow, C.L. in Advances in Metal-Organic Chemistry, Vol. 2; Liebeskind, L.S. Ed.; JAI Press, 1991, 1-57.
- 6. All new compounds were fully characterized by the usual spectroscopic methods and gave correct elemental analyses.
- 7. Elmore, N.F.; King, T.J. J. Chem. Soc. 1961, 4425-4429.
- 8. Mahaffy, C.A.L.; Pauson, P.L. Inorg. Synth. 1979, 19, 154.
- 9. Semmelhack, M.F.; Bisaha, J.; Czarny, M. J. Am. Chem. Soc. 1979, 101, 768-770; For a review, see Kursanov, D.N.; Parnes, Z.N.; Loim, N.M. Synthesis 1974, 633-651.
- 10. Schmalz, H.-G.; Millies, B.; Bats, J.W.; Dürner, G. Angew. Chem. 1992, 104, 640-643; Angew. Chem., Int. Ed. Engl. 1992, 31, 631-633.
- 11. For *rac*-13: Fp. 155-156 °C; IR(KBr): $v [cm^{-1}] = 1947$, 1862; ¹H-NMR (270 MHz, CDCl₃): $\delta = 0.35$ (s, 9 H), 1.31 (d, 3 H, J = 7.0 Hz), 1.62-1.76 (m, 3 H), 1.90-2.03 (m, 1 H), 2.49 (m, 2 H), 3.18 (m, 1 H), 3.76 (s, 3H), 3.85 (s, 3 H), 5.25 (s, 1 H); The constitution of *rac*-13 was further proven by NOE measurements: Irradiation in d at 1.31 ppm: 1.3 % NOE at 3.18 ppm and 0.3 % NOE at 3.8 ppm; irradiation in m at 2.49 ppm: 1.7 % NOE at 5.25 ppm; irradiation in s at 5.25 ppm: 3.3 % NOE at 2.49 ppm and 4.3 % NOE at 0.35 ppm.
- 12. For *rac*-14: Fp. 104-106 °C; IR(KBr): $v [cm^{-1}] = 1951$, 1875, 1872; ¹H-NMR (270 MHz, CDCl₃): $\delta = 0.35$ (s, 9 H), 0.73 (d, 3 H, J = 6.8 Hz), 0.99 (d, 3 H, J = 6.8 Hz), 1.27 (d, 3 H, J = 7.1 Hz), 1.49-1.72 (m, 3 H), 1.99 (m, 1 H), 2.12 (m, 1 H), 2.51 (m, 1 H), 3.14 (m, 1 H), 3.78 (s, 3H), 3.85 (s, 3 H), 5.39 (s, 1 H).
- 13. Benton, F.L.; Dillon, T.E. J. Am. Chem. Soc. 1942, 64, 1128; For a review, see Bhatt, M.V.; Kulkarni, S.U. Synthesis 1983, 249-282.
- 14. The ¹H-NMR data of *rac*-16 and *rac*-4 were identical to those given in lit.¹.
- 15. a) Corey, E.J.; Bakshi, R.K.; Shibata, S. J. Am. Chem. Soc. 1987, 109, 5551-5553; b) Corey, E.J.; Bakshi, R.K.; Shibata, S.; Chen, C.P.; Singh, V.K. ibid. 1987, 109, 7925-7926.
- 16. The enantiomeric purity of 17 was determined by HPLC on a *Daicel Chiralcel OJ* column (hexane/ isopropanol = 5 + 1); retention times of the enantiomers: 9.86 min (R) and 10.94 min (S).
- 17. The enantiomeric purity of 16 was determined by GLC on a Macherey-Nagel FS-Hydrodex β -PM capillary column (150 °C, H₂ as carrier gas).
- 18. Selected data of nonracemic compounds; 14: Fp. 75 °C, $[\alpha]_D^{20} = -43.9^\circ$ (c = 0.30 in CHCl₃); 15: Fp. 141-144 °C, $[\alpha]_D^{20} = +180.2^\circ$ (c = 0.43 in CHCl₃); 7: Fp. 137-139 °C, $[\alpha]_D^{20} = -38^\circ$ (c = 0.35 in CHCl₃); 16: (oil), $[\alpha]_D^{20} = -43.9^\circ$ (c = 0.30 in CHCl₃); 1³C-NMR (63 MHz, CDCl₃, additional DEPT): $\delta = 15.9$ (CH₃), 16.3 (CH₃), 17.2 (CH₂), 21.0 (CH₃), 21.7 (CH₃), 27.2 (CH), 29.0 (CH₂), 30.9 (CH), 42.9 (CH), 59.7 (CH₃), 60.2 (CH₃), 124.4 (CH), 129.8, 135.2, 135.5, 148.5, 150.3; 4: Fp. 84-86 °C, $[\alpha]_D^{20} = -68.9^\circ$ (c = 1.06 in CHCl₃).
- A completely different strategy for the synthesis of (racemic) monohydroxy-calamenenes also using arene-Cr(CO)3 complexes to control benzylic stereochemistry was described earlier: a) Uemura, M.; Isobe, K.; Take, K.; Hayashi, Y. J. Org. Chem. 1983, 48, 3855-3858; b) Uemura, M.; Isobe, K.; Hayashi, Y. Chem. Lett. 1985, 91-94.

(Received in Germany 30 June 1993; accepted 27 July 1993)